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Abstract. A PainlevC analysis of the two-dimensional Burgers equation is carried 
out and used to obtain a restricted Backlund transformation that maps a subclass of 
the solutions of the 1+2D Burgers equation onto a linear heat-like equation. Alterns 
tively, the Backlund transformation can be expressed as a map onto the derivative 
of the one-dimensional Burgers equation in appropriate dependent and independent 
variables. The singularity analysis also yields a further class of solutions obtained by 
solving a Schwarzian differential equation. 

1. Introduction 

Painlev6 analysis of partial differential equations (e.g. Weiss e l  a1 [l], Weiss [2, 31, 
Newel1 e2 a /  [4] and references therein, Conte [5]) is a powerful tool for uncovering the 
integrability properties of nonlinear systems of differential equations. In the present 
paper, we carry out a PainlevC analysis of the two-dimensional Burgers equation 

(ut  + uu, - U,,), + uyy = 0 (1.1) 

which describes weakly nonlinear two-dimensional shocks in dissipative media. The  
shocks described by equation (1.1) are weakly two-dimensional in the sense that the 
scale length of variation in the y direction is much larger than in the z direction. A 
general derivation of (1.1) has been given by Bartucelli e2 a1 [6 ] .  Equation (1.1) is 
sometimes referred to as the Zabolotskaya-Khoklov equation in nonlinear acoustics 
(Zabolotskaya and Khoklov [7], Rudenko and Soluyan [8], Crighton [9] and Hunter 
[lo]), with the tiyy term representing wave diffraction. Application of the 1+2D Burgers 
equation to weak shocks modified by the first-order Fermi acceleration of energetic 
particles in cosmic-ray astrophysics has been carried out by Zank and Webb [ll]. 
Segur [I21 has pointed out that  equation (1.1) is of considerable interest as a 1 t 2 D  
nonlinear wave equation. 

The  main result obtained from the PainlevP analysis is a ‘restricted’ Backlund 
transformation tha t  maps a subclass of the solutions of equation (1.1) onto a linear 
heat-like equation. We show that equation (1.1) possesses solutions of the form 

where 

h = t - f ( t )y  
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and 29 satisfies the linear heat-like equation 

29, - d,, + [p(t)h + d t ) ]  29 = 0.  (1.4) 

The functions f ( t ) ,  p ( t )  and q ( t )  in the Backlund transformation (1.2)-(1.4) are ar- 
bitrary. I t  transpires tha t  the 1+2D Burgers equation has the conditional Painlevd 
property. The  singularity analysis also yields a further class of solutions distinct from 
the Backlund transformation solutions (1.2)-( 1.4). 

In section 2 ,  the recurrence relations and resonances of the Painlev6 expansion are 
established. In section 3,  we obtain the Backlund transformation and other special 
solutions. Then ,  in section 4 ,  we indicate the relation of the results of the conventional 
PainlevC analysis of section 3 to the invariant Painlev6 expansion developed by Conte 
[5]. In brief, the Painlev6 expansions used are of the form 

03 03 

j =O j =  0 

where 

and 4 = 0 defines the singularity manifold. The  expansion in terms of 4 is the conven- 
tional Painlevd expansion, whereas the equivalent expansion in terms of x is Conte's 
invariant expansion. By construction the coefficients iij of the invariant expansion are 
invariant under the homographic (or Mobius) transformation 

For the I+ZD Burgers equation, the iij depend on the homographic invariants 

c = -dt/dz w = -4y/4x s = {4;2}  (1.8) 

where 

is the Schwarzian derivative (e.g. Hille [13]). Although the invariant expansion leads to 
the Backlund transformation (1.2)-( 1.4) fairly quickly, it is less successful in suggest.ing 
the second class of solutions not covered by the Backlund transformation. Section 5 
concludes the paper with a brief discussion. 

2. PainlevC expansion 

Following the approach of Weiss e t  a1 
expansion 

11 and Weiss [a, 31, we use the singular manifold 

j = O  
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in the Painlevd analysis of the 2D Burgers equation (1.1). Here $ ( z l y , t )  = 0 defines 
the singular manifold. The  balancing of the powers of lowest order requires p = 1. 

By balancing terms of order ~ J J - ~  in ( l . l ) ,  we obtain the recurrence relations 

( j  - 2 ) ( j  - 3)4zdJtuj-1 + ( j  - 3)[uj-2,t4z + ~ ~ - ~ , , 4 ~  + ~ ~ - ~ 4 ~ ~ l +  uj-3,t+ 

U. = -24,. (2.3) 

On using (2.3) for uo in the recurrence relations (2.2)) we find that resonances occur 
at j = -1, 2 and  3. The  recurrence relations at orders j = 1 , 2 , 3  may be expressed as 

j = 2 :  dJ&L + 4:4yy - 24,4,4,, = 0 (2.5) 
j = 3 :  U 0 , t z  + ( u O U l L z  - U0,zzz + U 0 , y y  = 0. (2.6) 

The  resonance equation (2.6) a t  order j = 3 is automatically sa.tisfied for u o l  u1 and 
4 satisfying equations (2.3)-(2.5). A consistent truncation of the PainlevC expansion 
(2.1) is obtained if we set u j  = 0 for j 2 2, in which case the j = 4 balance equation 
reduces to 

j = 4 :  b l , t  + UIu1,z  - u1,z,Iz + U 1 , y y  = 0 (2.7) 

so tha t  u1 also satisfies the 2D Burgers equation (1.1). The  higher-order balance 
equations for j 2 5 are satisfied identically if we set U, = 0 for j 2 2. The  truncated 
PainlevC expansion (2.1) then becomes 

4 U = - 2 2  + (2.8) 4 211’ 

Since the  condition (2.5) at the j = 2 resonance is not automatically satisfied, and 
imposes a constraint on 4, we observe tha t  the 2D Burgers equation has the conditional 
Painlevd property (e.g. [2,14]). We note tha t  the recurrence relations (2.2) can be 
written in the form 
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where PI = -1, pz = 2 and P3 = 3. Resonances occur when j = PI ,  ,f3* or P3. For an 
equation to  have the PainlevP property, the resonant pi have integer values and the 
Fj are identically zero a t  the resonances. The conditional PainlevC property arises if 
the resonances are integers, but the Fj a t  the resonances are not identically zero. In 
this case, the resonant Fj can be made to vanish either by including logarithms in the 
expansion or by constraining 4 to  satisfy Fj = 0 a t  the resonances. In the present 
analysis, F, (given by the left-hand side of equation (2.5)) is not identically zero at  
the j = 2 resonance, and so the 1+2D Burgers equation has the conditional Painlevd 
property. The  1+2D Burgers equation does not have the PainlevC property. 

3. Solutions 

We proceed to  determine solutions of the 1+2D Burgers equation (1.1) by solving the 
recurrence relations (2.3)-(2.7). Since u1 is given explicitly in terms of 4 by equation 
(2.4), equation (2.7) can consequently be regarded as an equation for 4 .  Thus, 4 
must satisfy simultaneously the two equations (2.5) and (2.7). We first determine the 
general solution of equation (2.5) in implicit form giving z as a function of 4,  y and 
t ,  i.e. z = X ( ~ $ , y , t )  for some appropriate function X .  Substitution of this solution 
in equation (2.7) then yields a single equation for X ( 4 ,  y , t ) .  Solution of the equation 
for X leads to the Backlund transformation (1.2)-(1.4), and to a further special class 
of solutions for 4 of the form 4 = @(A),  where A ( z , y , t )  is a specific function of z, y 
and t .  

9.1. Solution of constraint equation (2.5) 

The quasi-linear partial differential equation (2.5) for 4 can be solved by noting that 
the equation is equivalent to  the system of first-order equations 

The second of equations (3.1) can be solved by the method of characteristics (e.g. 
Sneddon [15]), and has the general solution 

w = Q(z - W y , t )  (3.2) 

where R is an arbitrary differentiable function. A combination of equations (3.1) yields 
a(W,q5)/a(z,y) = 0,  so that W = f(4,t) for some arbitrary function f .  Hence, the 
general solution of equation (2.5) is 

2 = X ( 4 , Y , t )  = f(4,t)Y + h ( 4 , t )  (3.3) 

where h E s1-' o f  (an alternative derivation of the solution (3.3) using a method due 
to  Monge is given in Sneddon [15], ch. 13, section 11). Equation (2.5) is also discussed 
by Weiss [2] (his equation (3.21)). We note that W is a homographic invariant (see 
equations (1.8), and section 4), with functional form 
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3.2. Reduction of equation (2.7) t o  an equation for X(+,y , t )  

To proceed further with the analysis, we regard z as the dependent variable, with 
z = X ( + , y , t )  having the functional form (3.3), which ensures that q5 satisfies (2.5). 
Equation (2.4) then yields 

u1 = -- - f 2 + X t .  
xi (3.5) 

By regarding z f X as the dependent variable in the Z D  Burgers equation (2.7) 
for u l ,  we find 

x; { b 1 , t  + u1u1,z - ul,zzlz + ul .yy}  = XJ (Xtt, - 2f,ft - 4 f f t J  

+ xi (-2x,,,t + 10f,f,, + 4f  f3,) 
+ xpx,,x,,t + 2X3,X,t - 4ff,X,, 

- [w,, + w,)2] x$,} + x; (-6X&X,t + x,, + wf,x;,) 
+ X i  (-10X++X4, - 6X&) + 48X,X:,X3, - 36X& = 0. (3.6) 

To analyze equation (3.6), i t  is necessary to consider the cases f, # 0 and f,+ = 0 
separately. Solutions of equation (3.6) with f, # 0,  lead to the special solutions of 
the form q5 = @(A), whereas the solutions of equation (3.6) with f, = 0 yield the 
Backlund transformation (1.2)-(1.4). 

3.3. Case f, # 0 

Proposition 1. Assume tha t  f, # 0. Then the I+ZD Burgers equation has solutions of 
the form 

where 

and Y(A) is a solution of Airy’s equation 

Y”(A) + ( k , A  + k2)Y ( A )  = 0. (3.9) 

In equations (3.7)-(3.9), g ( 2 )  and m(t) are arbitrary differentiable functions o f t  and 
I C , ,  kl  and  6, are arbitrary constants. 

To obtain the  solutions described in Proposition 1 above, we solve equation (3.6) 
for X. We first write 

Xq5 = f,Y + h,  = f,(Y + 9 )  (3.10) 

where 

9 = h*/f,. (3.11) 
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We then note, for example, that  

(3.12) 

(and similarly for the other derivatives of X, in equation (3.6)). Equation (3.6) can 
then be expressed either as a polynomial equation of degree eight in y, or alternatively 
as a polynomial of degree eight in X,. Equating powers of X, to  zero leads to  a set 
of nine determining equations for f and g (see appendix 1). It transpires that  the 
determining equations require either g, = 0 or f, = 0. Since we have assumed f 4  # 0 
from the outset, then g, = 0. Solving the determining equations yields solutions for 
f, g and h of the form 

(3.13) 
(3.14) 
(3.15) 

where g ( t )  and m(t)  are arbitrary functions o f t ;  bo is an arbitrary constant. The 
function A(4) satisfies the fifth-order differential equation 

where 

is the Schwarzian derivative (e.g. Weiss [2,3], Hille [13]). 
By regarding 4 as a function of A ,  and using the result 

equation (3.16) reduces to  

(3.16) 

(3.17) 

(3.18) 

(3.19) 

Equation (3.19) can be integrated twice with respect to A ,  to obtain 

where I C ,  and I C ,  are arbitrary constants. Use of a standard transformation for 
Schwarzian differential equations (Hille [13]) shows that equation (3 .20)  has solutions 
of the form 

4 = (3.21) 
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where Yl and Yz are two independent solutions of the linear second order differential 
equation 

Y”(A)  + ( k l A  + kz )Y (A)  = 0.  (3.22) 

For k ,  # 0, equation (3.22) is a version of Airy’s equation with general solution 

Y = (AA)’’, { a J 1 / 3  [ i f i ( A A ) 3 / 2 ]  + bY1/3 [ $ f i ( A A ) 3 ’ 2 ] }  (3.23) 

where a and  b are arbitrary constants 

AA = A + kz /k l  (3 .24)  

and J 1 / 3 ( 2 )  and Y l / 3 ( z )  are Bessel functions of the first and second kind of order 
1/3 (e.g. Abramowitz and Stegun [16]). For k, = 0 and k ,  # 0,  equation (3.22) has 
solutions in terms of exponential functions, whereas for k1 = 0 and k z  = 0,  the general 
solution is a linear function of A .  

Use of equation (3 .3)  together with equations (3.13)-(3.15) gives the result (3.8) 
for A(z , y , t ) .  Finally, from equation (2.4) we obtain the solution 

of the  1+2D Burgers equation ( l . l ) ,  where Yz(A)  is a solution of equation (3 .22) .  Use of 
equation (3.21) and the Painlev6 expansion (2.8) yields a solution of the form (3.25) 
for U but with Yz(A)  replaced by Y l ( A ) ,  where Y,(A)  and Y2(A)  are independent 
solutions of equation (3 .22) .  

3.4. Case f6 = 0 

Proposition 2. Assume tha t  f = f ( t ) .  Then the 1+2D Burgers equation has solutions 
of the form 

U = -2- 6 h  + f ’ ( t )Y - [f(t)I2 (3.26)  
29 

where 

h = 2 -  f ( t ) y  (3 .27)  

and 6 satisfies the linear heat-like equation 

6 ,  - 29,, + [p(t)h + p(t)] = 0. (3.28) 

The functions p ( t )  and q ( t )  in the ‘restricted’ Backlund transformation (3.26)-(3.28) 
are arbitrary functions o f t ,  whereas f ( t )  is a differentiable function o f t .  

To derive the Backlund transformation (3.26)-(3.28), first notice from equation 
(3.3) tha t  

X = f ( t ) y  + h ( 4 , t )  X, = h,. (3 .29)  
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(3 .30)  

We observe that the ‘steady-state’ version of equation (3.30), obtained by setting 
time derivatives of h equal to  zero, is exactly equation (3.16) for A ( 4 ) ,  except that  
A(+)  is now replaced by h(+).  This suggests converting equation (3 .30)  to  an equation 
for + ( h , t ) ,  to  obtain (see appendix 2) 

(3.31)  

where 

are homographic invariants (compare with equations (1 .8) ) .  

this connection more obvious, we write equation (3.31) in the form 
Equation (3.31) is reminiscent of the one-dimensional Burgers equation. To make 

where 

p = (+hh - d t )  / + h .  (3 .34)  

If we set the term in the curly brackets of (3.33) equal to  zero, then we obtain the 
one-dimensional Burgers equation for p .  By means of the Cole-Hopf transformation 

p =  -2h s * 
equation (3.33) reduces to 

(3 .35)  

(3.36) 

Integration of (3.36) twice with respect to h yields a heat-like equation 

*t - g h h  + [ p ( t ) h  + (?(t)]$ = 0 (3 .37)  

where p ( t )  and q( t )  are arbitrary functions o f t .  In view of the definition of p above, 
equation (3.35) can be written as the heat-like equation for 4 
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Use of the truncated PainlevC expansion (2.8) and expression (2.4) for u1 leads to  
solutions of the 2D Burgers equation with the form 

(3.39) 4 U = - 2 h  0 + U 1  

U 1  = - 2 2  + f’(t)y - [ f ( t ) l Z  (3.40) 11, 

where h is defined in equation (3.27). On setting 

29 = dzl (3.41) 

and using equations (3.37) and (3.38), the solution (3.39) for U can be expressed in 
the form of the Backlund transformation (3.26)-(3.28). The result (3.39) is an auto- 
Backlund transformation. 

4. The invariant Painlev6 approach 

One of the more striking features of the Backlund transformation (3.26)-(3.28), was 
the role played by the homographic invariants 6 and 3 in the derivation (see equations 
(3.31) and (3.32)). This role becomes even more evident in the invariant PainlevC 
approach. 

PainlevC expansions 
In the invariant Painlev6 

CT 

j = O  

are employed in which 

expansion introduced by Conte [5], the equivalent 

M 

j= 0 

is a new expansion parameter that  preserves the singularity character of the singularity 
manifold with x = 0 when 4 = 0,  and leads to PainlevC expansion coefficients Gj that  
are homographic invariants. The invariance of the Sj under the Mobius transformation 
(1.7) follows from noting that the gradient of x is given by a Riccati equation in x with 
coefficients that depend on the homographic invariants. In part,icular, if 4 = 4( t ,  y , t )  
and x = x ( z ,  y, t ) ,  then taking the gradient of x using equation (4.2) gives 

X t  = -C+ c,x - + (CXZ + CS)X* 

X r  = 1 + +sx2 

x, = -W + w,x - f (WZZ + W S )  x2 
where C, W and S are the homographic invariants 
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From the integrability conditions xrt  = xtr,  x,, = x,, and xyt = xty  for equations 
(4.3), we obtain the relations 

s, + e,, + 2 c , s  + cs, = 0 
s, + w,, + 2 w , s  + ws, = 0 
cy - w, - cw, + c,w = 0. (4.5) 

Substitution of the invariant expansion (4.1) into the partial differential system of 
interest (namely equation (1.1) in our case), and balancing the powers of x ,  taking 
into account the results (4.3), leads to recurrence relations for the iij , and the PainlevC 
analysis proceeds in the usual manner. However, since the two expansions (4.1) are 
equivalent, there is a direct transformation between the u j  and iij coefficients obtained 
by equating powers of x in equation (4.1). The  form of the transformation between 
the u j  and iij depends on whether j 5 p or j > p (see Conte [5]). The  transformations 
are 

By applying the results (4.6) t o  the truncated 1+2D Burgers PainlevC expansion 
of section 2, with p = 1, we obtain 

and hence 

for the truncated invariant expansion coefficients. Note in particular tha t  CO is con- 
s tan t  acd  

i i ,=c -w2  (4.10) 

is invariant under the Mobius transformation (1.7). The  truncated invariant expansion 
1s 

U = C o / x  + C1 = -2/x + c - w2. (4.11) 

Similarly, from (4.9) and (4.10), 

U 1  = c - w 2  + dJ,,/dJ,. (4.12) 

As in the non-invariant analysis, there are two constraints placed on 4.  The first 
is the compatability condition (2.5) at the j = 2 resonance, which can be written as 

wy + ww, = 0. (4.13) 



Two-dimens ional  Burgers equation 5475 

The  second constraint can be obtained either by substituting the expression (4.12) for 
u1 in equation (2.7) or by requiring that the expansion (4.11) for U satisfy the 1+2D 
Burgers equation (1.1). We obtain 

a - (-2WW, + 3ww, ,  + fwz" + c, + cc, - 2c,, ax 
- 2 W W X C  -w%, - w2s - SJ - W S ,  + cyy = 0. (4.14) 

Use of the results (4.5) and (4.13) to  eliminate the y derivatives in equation (4.14) 
gives 

d 
ax - ( - 2 w w ,  + 4ww, ,  + 3w,2 + c, + CC, - 2c,, - s,) 

- ( 4 w w , c ,  + 2cwz"  + 4 c w w , ,  + aww,,) = 0. (4.15) 

Searching for solutions of equations (4.13) and (4.15) with W, = 0,  equation (4.13) 
implies Wy = 0,  and hence W = f ( t ) ,  Equation (4.15) then reduces to 

(4.16) 

This equation is a disguised form of equation (3.31), which leads directly to  the 
Backlund transformation (3.26)-(3.28). By integrating the equation 

a 
-(Ct + cc, - 2c,, - S,) = 0. ax 

w = f(t)  = -4y/4x (4.17) 

for 4,  we obtain 

f$ = $ ( h ,  t )  h = I - f ( t )y .  (4.18) 

On using h and t as independent variables, equation (4.16) reduces to equation (3.31). 
This is clearly a much more elegant and direct path to the Backlund transformation 
than tha t  developed in section 3, but the choice of the ansatz W = f ( t ) >  was in fact 
suggested by the more tortuous analysis of that  section. 

Similarly, searching for solutions of equation (4.15) of the form P, = @ ( A )  with 
A,, = 0,  leads to the solution (3.7) of the 1+2D Burgers equation. This solution is 
also characterized by the conditions 

w,, = s,, = c,, = 0. (4.19) 

However, it  is not evident a priori  that  the above solution ansatz would be successful. 

5 .  Concluding remarks 

In this paper, we have carried out a PainlevC analysis for the two-dimensional Burgers 
equation. The  function 4, defining the singularity manifold 4 ( x ,  y ,  t )  = 0, was found 
to  be subject t o  two constraints, namely the quasi-linear partial differential equation 
(2.5) which determined the functional form of 4 ,  and the further constraint (2.7) 
that  the second coefficient u l ( z ,  y, t )  of the Painlev6 expansion itself satisfy the 2D 
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Burgers equation. The singularity analysis showed that a subclass of the solutions 
of (1 .1)  may be mapped onto a linear heat-like equation by means of the Backlund 
transformation (1.2)-( 1.4). The singularity analysis also yielded a further class of 
solutions, obtained by solving a Schwarzian differential equation (equations (3 .7)-  
(3 .9)) .  A clearer derivation of the Backlund transformation was provided (section 4 )  by 
using the invariant PainlevC analysis developed by Conte [5], in which the coefficients 
of the expansion are homographic invariants. The main advantage of this approach 
is that  it uncovers the homographic invariant sub-structure in the analysis. However, 
this approach does not by itself lead to  a systematic uncovering of all possible solutions 
for the truncated expansion. 

It is clear that  the Backlund transformation can be used to  construct multiple 
shock solutions of the 2D Burgers equation (compare for example the construction of 
multiple shock solutions of the ID Burgers equation given by Whitham [17], ch. 4) .  
Also of interest would be a clarification of the relationship of the present work with 
the group theoretical and Lie algebraic properties of the 2D Burgers equation (see, 
e.g., Harrison and Estabrook [18], Wahlquist and Estabrook [19]). 
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Appendix 1. 

In this appendix, we list the set of nine determining equations for f and g obtained 
by equating powers of X, = f4(y  + g) to zero in equation (3 .6) .  This procedure leads 
t o  the solutions (3.13)-(3.15) for f ,  g and h.  The equations are 

(A1.5)  
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- 693#f&4 + 944f4 - 6g;f;(gt - 2 f )  = 0 (A1.6) 

69;f; [3(f34lf$) - 8 (f4+/f+)2] + 42S+!?$$f& - 6s;+f; - lOg,$s& = 0 (A1.7) 

48f;9&9++ - g+f++I = 0 (A1.8) 

- 36(g+f+)4 = 0. (A1.9) 

A major constraint on the solutions of equations (Al . l ) - (Al .9 )  is obtained from equa- 
tion (A1.9), which requires that g+ = 0 since f4 # 0 was assumed from the outset. 
The solving of equations (Al . l ) - (A1.8)  with g+ = 0 yields the solutions (3.13)-(3.15). 

Appendix 2. 

By considering 4 as a function of h and t ,  equation (3.30) can be written as 

Manipulation of equation (A2. 
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